
Data-driven Background Crowds in Exodus: Gods and Kings
Martin Prazak Mungo Pay Damien Maupu Davide Vercelli Ian Masters

Double Negative Ltd.�

Figure 1: Stills of background crowds inExodus: Gods and Kings. All images c
 2014 20th Century Fox.

1 Introduction
Large virtual worlds require large virtual crowds. One of the main
themes ofExodusis a clash of ancient civilisations, represented via
virtual background crowds in a large number of shots. To generate
these crowds, we used an in-house crowd solution, whose develop-
ment was aimed at background crowds for photorealistic scenes.

VFX crowds are subject to speci�c requirements, because they are
used to enliven and extend crowd shots captured by a camera. Each
shot consists of three layers –hero characters(usually real actors
shot on set),crowd-anim(hand-animated) and proceduralback-
ground crowds. To retain scene consistency, the background crowds
must join seamlessly with other layers.

2 Manual or Procedural?
Large numbers of background characters in crowd scenes necessi-
tate some level of procedural generation. Traditional approaches (in
tools like Massive or Houdini) use a combination of data-driven and
procedural animation synthesis, steered by behavioural simulation
(particles/boids, fuzzy logic). While per-agent simulation leads to
a �exible and powerful simulation framework, small setup changes
can lead to different and unpredictable outcomes. For a crowd artist,
it can be frustrating if a minor tweak of a seemingly unrelated pa-
rameter causes large and unpredictable knock-on effects.

While our system includes a boid simulation module based on so-
cial forces, the most used functionality involves artist-driven vector
�elds, in�uence regions and keyframed behavioural switches with
randomization. Data-driven behaviour has proven to be favoured
by artists for its controllability and predictable results. Agent in-
stantiation is handled in a similar way: with probability maps and
conditions, the user can create a large number of characters with
randomized properties, while retaining a tight control of special
cases.

Motion synthesis utilises artist-provided animation clips and com-
bines them using state machines and blend trees. Artists often pro-
vide tailor-made clips to achieve a particular look-and-feel, which
would be hard to synthesize. Artists can also animate whole groups
of characters, allowing complex agent interaction. Our system pro-
vides tools for instantiating these, and for tweaking their trajectories
and time offsets to allow the artist to achieve the desired outcomes.

� E-mails:f map,mungo,dmu,dv,iimg@dneg.com

This approach leads to “crowd compositing” – creating large simu-
lations by combining pre-simulated vignettes.

However, users expect some motion editing to be performed auto-
matically (with the ability to override results if necessary). Firstly,
during the setup stage of a motion state machine, possible transition
points are detected automatically. Secondly, the animations have
to be applicable to any similar character, making a semi-automatic
retargetting procedure necessary. Finally, footstep cleanup and
ground adaptation have to be performed for any locomotion clips.

3 Under the hood
From production experience, we have found out that off-the-shelf
3D software does not lend itself well to crowd requirements; our
system is designed to address the most common shortcomings.

In the core of our system there is a �at shared memory data struc-
ture, created during simulation initialisation by collecting per-frame
storage requirements of all nodes. Because the data layout and ac-
cess requests are known beforehand, we can create a data depen-
dency graph with parallel branches evaluated simultaneously. This,
combined with the use of instanced geometry and shaders, allows
us to display up to 100k agents in close-to-realtime.

4 User interaction
To facilitate a variety of work�ows, we have developed a number
of tools to ease the setup of scenes and drive simulation properties.
These include a painting tool so that artists can paint on geometry
to trigger behaviours, and Python integration for the more technical
artists so that scene setups and agent behaviours can be scripted.

5 Rendering
The large number of characters in a scene makes the use of optimi-
sation techniques necessary – a typical scene with characters rep-
resented as animated meshes would occupy 3 orders of magnitude
more space than a corresponding bone-transform representation.

A classical approach of mesh instancing is not applicable to crowd
scenes, because the probability of two characters of the same vari-
ant displaying the same frame of the same clip is very low. Our
system makes use of 3 main techniques to tackle this problem.
Firstly, we use a proprietary �le format storing bone transforma-
tions to represent the simulation data (with undeformed mesh and
skinning stored separately); the mesh deformation is evaluated in
the renderer, saving a signi�cant amount of disk space. Secondly,
we use a “procedural” with lazy evaluation, i.e. each character is
instantiated only when a ray passes through its bounding box. This
makes sure that skinning of occluded characters and characters out-
side camera frustrum is not computed. Finally, we reuse most of
look data, computing most of character variation procedurally.


